Nakayama’s lemma for half-exact functors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Large Are Left Exact Functors?

For a broad collection of categories K, including all presheaf categories, the following statement is proved to be consistent: every left exact (i.e. finite-limits preserving) functor from K to Set is small, that is, a small colimit of representables. In contrast, for the (presheaf) category K = Alg(1, 1) of unary algebras we construct a functor from Alg(1, 1) to Set which preserves finite prod...

متن کامل

On Stable Equivalences Induced by Exact Functors

Let A and B be two Artin algebras with no semisimple summands. Suppose that there is a stable equivalence α between A and B such that α is induced by exact functors. We present a nice correspondence between indecomposable modules over A and B. As a consequence, we have the following: (1) If A is a self-injective algebra, then so is B; (2) If A and B are finite dimensional algebras over an algeb...

متن کامل

Functors for Coalgebras

Functors preserving weak pullbacks provide the basis for a rich structure theory of coalgebras. We give an easy to use criterion to check whether a functor preserves weak pullbacks. We apply the characterization to the functor F which associates a set X with the set F(X) of all filters on X. It turns out that this functor preserves weak pullbacks, yet does not preserve weak generalized pullback...

متن کامل

Functors for Alternative Categories

An attempt to define the concept of a functor covering both cases (covariant and contravariant) resulted in a structure consisting of two fields: the object map and the morphism map, the first one mapping the Cartesian squares of the set of objects rather than the set of objects. We start with an auxiliary notion of bifunction, i.e. a function mapping the Cartesian square of a set A into the Ca...

متن کامل

Face Functors for Klr Algebras

Simple representations of KLR algebras can be used to realize the infinity crystal for the corresponding symmetrizable Kac-Moody algebra. It was recently shown that, in finite and affine types, certain sub-categories of “cuspidal” representations realize crystals for sub-Kac-Moody algebras. Here we put that observation on a firmer categorical footing by exhibiting a corresponding functor betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1972

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1972-0302633-2